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ABSTRACT

Radiation from the Aerospace Systems Test Reactor positioned
within the Outside ASTR Tank was directed, with a narrow-beam glab
geometry, onto test materials of 3% borated polyethylene and of lead.
Measurements for polyethylene and lead, except as noted, were made
of (1) the radiation source term; (2) the flux distribution of thermal
and fast neutrons within the test materials; {3) the angular distri-
bution of thermal- and epithermal-neutron flux, fast-neutron dose
rate, and secondary gamma rays from the test materials; (4} the
reflection of neutrons from borated polyethylene and from steel;

(53 the angular distribution of fast-neutron and gamma-ray number-
energy flux; and (6) the angular distribution of gamma-ray dose rate
resulting from primary gamma rays scattering in and from the test
materials. Data for items 1, 2, 3, and 4 are presented in Volume

I of this report; data for items 5 and 6 will be published in
Volume II.
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REPORT SUMMARY

An experiment was performed for the purpcse of obtalning
information which would be of use in the developrment and verifica-
tion of methods designed to predict the transport of nuclear
radiation.

The experiment involved a narrow beam of neutrons and gamma
rays from the Aerospace Shield Test Reactor incident to various
thicknesses of 3% borated polyethylene slabs and lead slabs. The
maximum test material thicknesses investigated were 15 and 6 inches
for borated polyethylene and lead, respectively. Angular distribu-
tions of the radiation emerging from the test materials were deter-
mined for the slow-neutrcn flux, fast-neutron and gamma-ray dose
rate, the secondary gamma-ray flux, and the angular distribution
of fast-neutron and gamma-ray number-energy flux. Additional
measurements were made to determine the reflectlon of fast and slow
neutrons from 4-in.-thick slabs (each) of 3% borated polyethylene
and steel.

The experimentally determined angular distributions of fast-
neutron and gamma-ray dose rate obtained for each thickness of
test material show two distinct contributions to the total distri-
bution - scattered and uncollided. The foregoing indicates that
theoretical methods designed to predict the transport of radiation

through slabs should treat the uncollided and scattered fluxes as



two separate components. Of additional significance 1s the small
thickness of polyethylene required for the scattered component to
reach equilibrium and develop its asymptotlce shape, equilibrium
being reached for fast and epithermal neutrons at a thickness of
3 inches. For lead, the asymptotic behavior of the fast-neutron
scattered component is closely approximated at a slab thickness
of 4 inches, |

Measurements of the reflection of neutrons from 4-in.-thick
slabs show that the reflected fast-neutron dose rate is greater
from steel than from polyethylene by a factor of 3. Further
investigations of the reflectiocn of radiation from shield materials
as a function of material thickness shculd provide valuable infor-
mation for the design of shielded compartments. HRelatlve positions
of hydrogenous and high-Z materials could considerably affect the
contributions to total dose rate from the reflected and secondary

gamma~ray components.
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I. INTRODUCTION

An experiment involving a narrow beam of radiation incident
on test-material slabs of lead and of 3% borated linear polyethylene
was performed at General Dynamics/Fort Worth (GD/FW). The experi-
ment was designed to provide data on {1) the angular distribution
of emergent neutron and gamma-ray number-energy flux and dose rate,
(2) the distribution of neutron flux within the test materials, and
(3) the angular distribution of emergent secondary gamma rays
produced as a result of (ngph,y) and {n,n'y) reactions within the
test materials.

Extensive pre-planning and preliminary experimental investiga-
tions were made to evolve a good experimental narrow-beam geometry.
These efforts were successful in that a well-defined beam of
radiation was obtained and undesirable leakage and streaming of
neutrons and gamma rays was effectively suppressed.

Upon completion of the planned experiment, additional data
were obtained because of the well-defined narrow-beam geometry
which had been evolved. These data were obtained on the reflection
of neutrons from 4-in.-thick slabs of 3% borated polyethylene‘and
of Type 304 steel.

Because of the quantity and variety of measurements, the
experimental data are reported in two separate volumes., Volume I
includes all experimental results except the spectral data
involving the angular distribution of fast-neutron and gamma-ray
number-energy flux. Volume II (Ref. 1) will report the neutron

and gamma-ray spectral data.
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II. TECHNICAL DISCUSSION

The experimental method is based on a reciprocity theorem
from transport theory. According to the theorem, and with
reference to Figure 1, the energy-angular flux F(x,0,E) that is
transmitted through a slab of thickness x and that is due to an
infinite plane source is equal to the surface integral of the flux
f(x,r,9,E) penetrating an identical slab but due to an elementary

(1ine-beam) source. That is,

P(x,6,E) = 2r | £(x,r,0,E’ r dr.

The flux received at R,0, 1is

oo 2T
D(x,R,0q,E) = f f (£2)-1 £(x,r,8,E) cos 6 r dr df.
r=0 @=0

If, for a line~beam source, rpax is the off-centerline distance
beyond which the transmitted flux f(x,r,G,E) 18 negligible and
Ppax << R, then z"-}: R, @ ¥ 9,, and
Pmax
D(x,R,0q4,E) 2 2r (R2)~1 cos 9 f f(x,r,00,E) r dr
r=0
or

D(x,R,00,E) & (R?)~1 cos 95 F(x,0,,E).

12
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Therefore, data accumulated from a detector loccated at the
coordinates R (constant) and o (variable) may be related to the
angular flux from an infinite plane scurce provided rp,x <<R.
This means that virtually all of the flux transmitted through the
slab must be confined to a circle ocn the slab surface whose radius
1s small compared to the slab-detector distance. The "important
region” on the slab surface depends, of course, on the slab thick-
ness and the incident-beam dlameter. It was therefore important
in designing the experiment to establish a beam of minimum diameter,
commensurate with required intensity, and to make the slab area
and slab-detector separation distance as large as possible.

For the experimental measurements %to be of meaningful value,
it was further required that (1} the undesirable components of
radiation leakage and streaming be effectively suppressed, {2) the
effects of source~coliimator walli scattering and edge penetration
be minimized for both neutrcns and gamma rays, and [3) the
contribution of secondary gamma rays produced witnin the scurce-~
collimator configuration be effectively attenuated vrior to reaching
the test material.

Preliminary experimental investigaticns, which are described
in following sections, confirmed the fact that all of the fore-

going requirements were satisfied.

14



I1I. EXPERIMENTAL ARRANGEMENT

The Aerospace Systems Test Reactor (ASTR), described in
Reference 2, was positioned within the Outside ASTR Tank (OAT)
to serve as the source of radiation for the experiment. An
external view of the OAT with its weather dome is shown in Figure 2,
Shown in Figure 3 18 the Internal experimental geometry of the OAT,
which remained constant throughout the experiment. The U-in.-thick
lead shield located between the ASTR and the void region was
installed for the purpose of reducling the after-shutdown gamma-ray
leakage and increasing the neutron-to-gamma ratio.

To prevent possible water leakage Into the void region, air
pressure of 8 psi was maintained within the void compartment, which
consisted of an aluminum box of l-in.-wall thickness and two air
bags. As a means of determining that water was not in the void
reglon, a system of radliation detectors was set up and monitored to
detect any significant change 1n the neutron leakage through the
OAT void.

Satisfactory performance of the experiment required that the
geometry external to the OAT be flexible to the extent that the
neutron-to-gamma ratio of the beam of radiation from the ASTR could
be varied over a large range of values. The three experimental
geometries used and the purpose for which each was intended are

described in the following sections.,

15
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3.1 OAT Geometry I

Following a series of preliminary investigations, it was
determined that the experimental arrangement shown in Figure 4
would provide a satisfactory narrow-beam geometry in that an
infinite-slab condition could be closely approximated and, at the
same time, radlation fluxes of sufficient intensity to obtain
reliable data would be avallable., 1In constructing the concrete
shield wall and the 6-in.-diam by 76-in.-long source ccllimator,
no line-of-sight void regions, except the collimator cpening, were
allowed to exist between the ASTR and any detector position. The
l-in,.~-thick lead slab between the external source collimator and
the OAT wall was inserted to increase the fast-neutron* to gamma
dose-rate ratio to approximately 25; this was necessary in order
to expose nuclear emulsion plates behind large thicknesses of
polyethylene slabs without undue gamma fogging of the plates,

The test materials investigated were 3% borated linear poly-
ethylene slabs made up of 1- by 48- by 72-in, sections and
chemically pure lead slabs made up of i~ by 39- by 39-in. sections.
The lead slabs were positioned normal to, and symmetrical about,
the centerline of the source collimator, whereas the pclyethylene
slabs, positioned as shown in Figure 4, were symmetrical about the
collimator centerline on three sides only. The position of the
exit side of the slabs remained constant throughout the experiment.
In addition, the window in the concrete wall into which the test

material slabs were positioned was adjustable so that it was

*The fast-neutron dose rate was based on an RBE of 10.
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possible to keep the edges of the slabs, regardless of size, in
contact with the concrete.

To obtain mapping data, a system of straight and circular
tracks was installed. This is shown in Figure 5, a pictorial view
of the geometry shown in Figure 4. The dolly, containing selected
detectors positioned horizontal to the ground, was remotely posi-
tioned through the use of a closed-circuit television system. Also
shown in Figure 5 1s a 9-ft-diam py O-ft-high tank into which is
being positicned a lead shield containing the gamma-ray spectro-
meter., When the lead shield is in position, the tank is filled
with water to reduce the flux of neutrons incident upon the shield.
The complete assembly forms a c¢ollimator-shield system for the
gamma-ray spectrometers used during the experiment. Shown in
Figure 6 is a cross-sectional view of the collimator-shield system,
Figure 7 defines the collimators used for 1- and 3-crystal gamma-ray
spectrometers,

With the exception of gamma-ray spectral data, all data were
accumulated by means of uncollimated detectors and uncollimated
nuclear emulsion plates.

3.2 OAT Geometry II

That portion of the experiment wherein data on the angular
distribution of gamma-ray dose rate and gamma-ray number-energy
flux were obtained required that the production of secondary gamma

rays within the test materials be effeztively suppressed. To

20
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accomplish this reduction in secondary gamma rays, a 5.88-in.-diam by
15-1in.~long polyethylene plug was inserted into the 6~in.-diam source
collimator (Fig. 4) at a point adjacent to the external wall of the
OAT. Insertion of this plug reduced the fast-neutron to gamma-ray
dose~rate ratio at the test sample position by a factor of 250 -
i.e., the fast-neutron dose rate decreased by a factor of 1000
whereas the gamma-ray ‘dose rate decreased by only a factor of U,

It was experimentally determined that, with this geometry,

secondary gamma-ray production within the test sample was effectively
suppressed.

3.3 OAT Geometry III

The geometry shown in Figure 8 was established to provide a
means of accumulating data on the reflection of neutrons. Fast-
neutron dose rates and relative neutron flux data, above and below
the cadmium cutoff, were obtalned as a function of y for values
of h = 12 and 24 inches. All detectors were mounted vertical to
the collimator centerline to prevent attenuation of the primary
beam prior to reaching the test material.

The test-material slabs were suspended by two steel cables to
minimize the mass of supporting structure. The U4-in,-thick, 3%
borated polyethylene slab was made of the polyethylene slabs
described 1in Section 3.1, whereas the steel slab was made of four

1- by 39~ by 39-in. steel plates.
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Iv, EXPERIMENTAL PROCEDURES

A description of the various detector systems used during the
experiment and, where necessary, a description of the data-reduction
techniques are given in Sections 4.,1.1 and 4.1.2.

During the early stages of the experiment, a concerted effort
was directed toward determining the integrity of the experimental
geometries used in the experiment., These procedures, as well as the
results of the geometry checkouts, are described in Section 4,2,

4,1 Radiation Detection Methods

Required for the experiment were a variety of detectors to
determine the fast-neutron and gamma-ray dose rates and energy
spectra and the thermal- and fast-neutron fluxes.

4,1,1 Neutron Detectors

Fast-neutron dose rates were determined by means of the fast-
neutron dosimeter (FND) described in Reference 3. The FND standard-
ization was checked immediately prior to and following a particular
serlies of measurements.

Bare and cadmium-covered enriched boron-trifluoride (EF3)
detectors (Ref. 4) were used to accumulate data on the neutron
fluxes below and above the cadmium cutoff, which is approximately
0.5 ev. The BF3 tubes were 0.565 inch in diameter and 8.5 inches
long.

Subcadmium and fast-neutron fluxes were measured with various

thermal and threshold foil detectors. Gold folls were used as

26



thermal detectors., Fast-neutron flux data were obtained by using
the 832(n,p), Mg24(n,p), A127(n,p), and A127(n,a) reactions with
their respective effective thresholds of 2.9, 6.3, 8.1, and 4,6 Mev,
Following irradiation, the foill activities were determined by means
of end-window counters coupled to automatic data processing equip-
ment, The raw data were converted to‘néutron flux by the Foll Data
IBM Reduction Code K-26.

Iiford L-2 nuclear-emulsion plates were used to determine the
spectrum of fast neutrons transmitted through test materials of
lead; Ilford K-1 plates were used in conjunction with 3% borated
polyethylene test materials since these plates are less sensitive
to gamma fogging when large thicknesses of polyethylene are used.

A description of the plate-reading and data-reduction techniques
are described in Reference 5.

4,1.2 Gamma-Ray Detectors

Gamma-ray dose rates were determined by means of the anthracene
scintillation dosimeter (ASD) described in Reference 6.

A 3-crystal anticoincidence NaI{(TL} total-absorption gamma-ray
spectrometer, designed at the GD/FW Nuclear Aerospace Research
Facility and fabricated by the Harshaw Chemical Company, was used
to investigate the production of secondary gamma rays within the
test materials, Used in conjunction with the analyzer was an RCL
256-channel analyzer. A description of the spectrometer and the
techniques used to analyze the pulse~height distributions accumu-

lated using the spectrometer are described in Reference 7.
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Spectral data on the penetration and scattering of primary
gamma rays were obtained with a 5-in.-diam by 4-in.-long single
crystal NaI(Tf) gamma-ray spectrometer coupled to the RCL 256-
channel analyzer. The pulse-helght distributiona, corrected for
background, were converted to energy spectra by a IBM-7090 program
and a 36 x 36 inverse response matrix which was formulated from the
Q=32 code,

4,2 Experimental Geometry Checkout

To establish the integrity of the experimental geometry, a
series of radiation measurements was made which were designed to
determine (1) the importance of neutron streaming, leakage,and air
scattering relative to the direct-beam radiation; {2) the extent to
which the test material approximated an infinite-slab geometry; and
(3) the degree of symmetry of the direct beam of radiation from the
ASTR,

The magnitude and distribution ¢f neutron streaming was deter-
mined by flooding the source collimator with water and then obtaining
the fast-neutron dose rate and subcadmium and eplcadmium BF3 count
rate as a function of © for 6 = + 60°, It was established that
the streaming of fast neutrons contrlibuted little to the regular
experimental data, whereas streaming of subcadmium meutrons
contributed as much as 80% to the experimental values at large
angles and thicknesses of borated polyethylene test materials.

Regardless of the magnitude of the streaming - which had an angular

28



distrivution independent of the test-material configuration - aijil
experimental data were corrected for the effect cf streaming.

Shown in Figure 9O are the fast-neutron decse-rate distributions
on the exit side of the borated polyethylene as a function of Y.
These data show that beam symmetry is good. The data alsc provide
information on the extent to which an infinite =2lab gecmetry 1is
approximated. As an example, c¢cnsider the fast-neutrcn dose rate,
Dn{y), as a function of y for a 9-in.-thick borated polyethylene
slab. Performing the integration

y

f Dn(y) 2ry ay

y=0

shows that integrating to y = 30 inches and y = 50 inches gives
results little different one from the other, y = 50 inches being
the maximum value of y mapped. Remembering that the half width
of the polyethylene slabs is 24 inches and assuming 50 inches to be
the limiting value of Yy, the integral ratio Rp i1s calculated:

y 50" -1
Rp =[ f Dhly) 2my dy][f D,{y) 2ry dy] .

y=0 y=0
This ratic is an expression withr which to evaluate the degree to
which the slab approximates an infinite-slab conditicn for the
transmission of neutrons. Rp, as a function of y, for a 8-in.-

thick borated polyetnylene slab 1s shown in Figure 10 where it 1is
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evident that the slab rapidly approaches the infinite-slab condition
with increasing values of y. At y = 24 inches, R, is equal to 0.98,
which signifies that 98% of the emergent fast-neutron dose rate is
transmitted through the slab within the slab boundary; thus, the
slab closely approximates an infinite-slab condition.

Insofar as geometrical effects are concerned, a comparison of
bare and collimated fast-neutron dose-rate data obtained at various
values of the angle @ brovided a measure of the accuracy of the
experiment. Because the difference between the bare and collimated
data was small, it was concluded, in conjunction with previously
described measurements, that the experimental measurements could be
used for comparison with angular distribution calculations for

infinite plane sources.
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V. RESULTS AND DISCUSSION

The experimental results reported below include all data
asccumulated except the angular distribution of the number-energy
flux for fast neutrons and gamma reys. For the sake of clarity,
subcadmium and eplicadmium fluxes will be referred to as thermal and
epithermal fluxes, respectively.

5.1 OAT Geometry I

Data presented for the experimental geometry shown in Figure 4,
the high neutron-to-gamma ratio configuration, include the fast-
neutron source term, the angular distribution of fast-neutron dose
rate, the relative thermal- and epithermal-neutron flux, the neutron
flux distributions at particular depths along the centerline of the
test materials, and the angular distribution of secondary gamma rays
produced within and emerging uncollided from the test materials.

5.1.1 Source Term of Fast Neutrons

The spectrum of fast neutrons and the flux of thermal neutrons
incident to the test materials are shown in Figure 11. Integration
of the spectrum over energy shows that the fast-neutron to thermal-
neutron flux ratio is approximately 8.

5.1.2 Angular Distribution of Neutron Dose Rate and Flux

The fast-neutron dose rate angular map of the source-collimator
at a slab-detector separation distance of 192 inches and for no test

material in position is shown in Figure 12,

33



NPC 17,085

¢’ h =3.38x 10! neufrons/cm‘Z-sec-waf'f‘

N e~ ¢ o w L] o~

~N © o -

(Hem-Aopy-

99s-zwd/suosyneu) xnj ABisuz-soquinN UOHNON-ise4

4

13

12

Neutron Energy (Mev)

S
e
T
3
g
ey
8!
Wl
zs
..m.x.
s
Es
T
i
M 3

34



40 45 50

m,.wlm|1n|_1|t|yl‘{‘l!‘ T N v T : | ~
|
~ oy !
- i ' . H
m A e i -
z - L
. o ! X 1 .
o e i P w
R ¢ [ [ :
i [} ? : ‘ ' _ .
! __ .“ m w i ! ! i ._
o ! ~ [ [ S
! ¢ ' ‘ !
’ o ! : . ! i
U e e — o ey l:?v:.).hlt.ll.liv P N R ——t "
: : — i
L ' i
. ; [ !
| : e i
b . Do !
i [ i i H
! . i i i
.d RN | - A. - - 1
' ,m H o
) P
SEE-E ,
S T
BEnm
1 :
: i ! _
R R o
1 o ) .
_ L “
} B
M : B
; e ; 1 -
BT i 7
i . ; % :
N N 1 = \
. ¥ . e } .
hRE m : R
P} i - i e . I :
L | b _ IR | ] I
: ! - 7 - t ; H
i w : “ . ! !
! : - ’
\ﬁ _ { _ mw i ! _ *
S rt
L]
L o~ S oV € ® o~ IUQT ~ v - @ MO”.k_. ~ m

(Hem-ay/weaw) ooy es0q vosnen-isey

35

‘30
0 (degrees)

Angular Distribution of Fast-Neutron Dose Rate:
Collimator Map for No Test Material in Position

r

15 20 25

192 inches)

35



Shown in Figure 13 are the angular distributions of fast-neutron
dose rate for borated polyethylene slab thicknesses of 3, 6, 9, 12,
and 15 inches. These distributions show the distinct separation of
direct-beam and scattered components of radiation transmitted from
the test material. Also obvious is the fact that the rate of change
in dose rate as a function of the angle © in the scattered portion
of the distribution is essentially independent of material thickness
for the thicknesses investigated.

The angular distributions of fast-neutron dose rate for lead
thicknesses of 2, 4, and 6 inches are shown in Figure 14, It appears
that equilibrium of the scattered component of fast-neutron ‘dose
rate is rapidly approached in going from a lead thickness of 2 inches
to one of 4 inches.

The angular distributions of relative thermal- and epithermal-
neutron flux obtained from bare and cadmium-covered BF3 detectors
for particular thicknesses of borated polyethylene are shown in
Figures 15 and 16. The rapid disappearance of the direct-beam
component of thermal-neutron flux is evidenced in Figure 15 by the
shape of the distributions and by the fact that meaningful data were
obtained for a maximum material thickness of only 6 inches. An
examination of the epithermal-neutron flux distributions (Fig. 16)
for borated polyethylene again reflect the fact that equilibrium is
rapidly reached with increasing thickness of the hydrogenous

material.
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The angular distributions of the thermal-~ and epithermal-
neutron flux for various thicknesses of lead are shown in Figures
17 and 18, These distributions reflect the low neutron absorption
properties of lead, particularly for thermal neutrons, in that the
shape and magnitude change little with increasing thickness for
angles greater than approximately 10 degrees,

5.1.3 Neutron Flux Distributions Within Test Materials

The use of threshold foll detectors to measure neutron flux
requires that an effective threshold energy be assigned for the
various reactions involved. The effective thresholds used are
those previously described and shown in Figures 19 through 24,

The distribution of neutron flux along the centerline of 3-,
6-, and 9-in.-thick slabs of borated polyethylene 1i1s shown in
Figures 19, 20, and 21, respectively. Shown in Figures 22, 23, and
24, respectively, are the neutron flux distributions along the
centerline of 2-, 4-, and 6-in.-thick slabs of lead.

For thermal neutrons, the effect of the finite slab boundary
is noticeable for both materials investigated. A comparison of the
lead and polyethylene data shows that the attenuation properties of
the two materials are essentially the same for neutrons above
6.3 Mev in energy.

5.1.4 Secondary Gamma-Ray Production

Data-reduction procedures used to evolve the gamma-ray flux

distributions described below include corrections for detector

41



Cadmium-Difference BF, Count Rate (counts/min-watt)

NPC 17,061

:
]
i
‘ i
|
!
|
Thickness
. (inches)
0
2
4
[
| : ‘ .
1 | I i !
T | | |
i - < | |
f —
b - 3 4 : 1
Se - - o i
4. P -4 -4 - .
. i i
2 ——— —_ — —d
104 1. ! I - 1 : _L i
5 0 5 10 15 20 25 30 35 45 55 0 &
0 (degrees)
Figure 17. Angular Distribution of Relative Thermal-Neutron Mux

from Various Thicknesses of Lead Slabs (R — 192 Inches)
42



NPC 17,062

[ ; ] T T T 7 ERRRE i
~q ; ' [ : t
. . ' . m
1
. |
. s 1
i i i o
TRFPUEG H _,w:..... - . —
{ - . -
{ o : H
P o m . { co _
! 1o i . ; t .
! _u b PSRt S . . N
P peil L |
Lo ' Py
v N [ ) 1 1
i ! . ; * ! !
i RO : « I 1 ! :
i M Y T t
i R R
NI B . Lyt i : !
R W R I
R R R i ,m* (R —
ol 1 P ! )
e S‘““ ! v )
il EEES P
i R R
I, | EE£L£E ' o
Pl wEEE L
: 1 = N }
il .m..nm.n.n.m _5!:“; i ]
' ' ELEL.EL N w
IR oo - |
1 . . N 4
e QOB L
C ’ vy [ |
H ] o i 1 . N
) t ! [ ! t
: I X up. *.. - -
i : L
. H e
: . Pl i
I i et [OOSR B—
i . o :
ch P .”
: i o i
i P i
! i e i
! i [N '
: . !
b om emmtet + - s e
[ t ! '
I [ * H
i [ 4 .
n . 1
A X ! . . -
' to ] i
AR T oo
1 : o i ;
; s I _: h —— T " ” .
{ _ H
- - [ w i '
&4 3 R gl - SERN I

(Hem-unu/squnod) eyey qunog g pesescs-ummwpes

65

20 25 30 35 40 45 50 55

10

0 (degrees)

192 Inches)

pithermal-Neutron Flux

Various Thicknesses of Lead Slabs (R

Angular Distribution of Relative §

from

Figure 18.

43



NPC 17,063

[ESS W

Tl

Ngﬁfmn eneréy

> 2.9 Mev
> 8.1 Mev

: Therma!

o

: > 4.5 Mev
> 6.3 Mev

1ot

{Hem-205-zwd/suosynsu) xnyy JaquinN uoynep

13 4

12

7
Depth (inches)

Distribution of Neutron Flux along Centerline of a
3-Inch-Thick Slab of 3% Borated Polyethylene

Figure 19,

44



W -l AJLWT .- B a
.ll.H:,x \_ o . -
4 T o
< '

> Li.

- >

N ] 3.

e 2 3 2 lm p3

€ _o - ™ ] = -

I I I

W VAN A A - A

z .. ﬁ_

-

A N T

1!

[ - -
-

HPM-295-7WD /SU0JN3U) XN JOQUINN UOLND
{ W/ 4 sequinN N

10-2

14

13

12

10

Depth (inches)

Distribution of Neutron Flux along Centerline of o
6-Inch-Thick Slab of 3% Borated Polyethylene

Figure 20.

45



NPC 17,065

| -Mev

" Neutron energy

; >e

Thermal

N7

(Hem-285-zwd /suosgneu)

®w~ @ wn

xni4 Joquiny uosnaN

14

1K)

12

i0

Depth (inches)

f Neutron Flux along Centerline of a

9-inch-Thick Slab of 3% Borated Polyethylene

Distribution o

Figure 21.

46



NPC 17,066

10!

3 3 T3 3
by = |2 2] 2 :
o 1E]iem = .
e ] - L .
‘> -] A. \/ > - - -
&l . T :
i iy N - M Snaks
- BTN 1. Ll
] { . ...
.1“&, i W T N A
ﬁ ©o~ 6 6 -
add J

(Hem-d9s-7w>d/suoiynau) xniy Jaquny uvoynep

Depth (inches)

Distribution of Neutron Flux along Centerline of a

2-Inch-Thick Slab of Lead

47



NPC 17,067

> [l ik
ol N .

. = X >

grs s 18
OJM ‘otlla.,M M
m »9 l{la.m.a 4
£ 2P 1%
FR i A 1N
2y :

T

10t

-1t 4

"

s

1

Odw
- = o~ -

(Hem-29s-zwd/suoynau) xny

soquiny uosnoN

103

Depth (inches)

Distribution of Neutron Flux along Centerline of a
48

4-Inch-Thick Slab of Lead

Figure 23.



NPC 17,068

> 4.5 Mev

Neutron energy

> 8.1 Mev

o o oo o o e ot s o o |

s o o it e 5

(Hom-295-zwd /suoyneu)

L W"Y w -

XNy Jequny uouneN

inches)

Depth (

Distribution of Neutron Flux along Centerline of a

6-Inch-Thick Slab of Lead

Figure 24.

49



collimator edge penetration by the gamma rays of interest; the data-
reduction techniques are fully described in Appendix B of Reference
7.

Representative pulse-height distributions showing structure
attrivuted to secondary gamma rays from borated polyethylene and
lead are shown in Figures 25 and 26, Figure 25 shows the pulse-
height distribution accumulated at an angle of @ = 60°, the test
material being a 6-in.-thick slab of 3% borated polyethylene,
Identified in the distribution are total absorption peaks attributed
to 2.23~ and 4.45-Mev gamma rays produced in H(ntp,y) and Clz(n,n'7)
reactions, respectively.

The pulse-height distribution shown in Figure 26 was obtained
at an angle of © = 4592 with a 2-in.-thick slab of lead as the test
material, The total absorption peak at channel number 67.5 is
attributed to 2.615-Mev gamma rays produced in the Pb2°8(n,n'y)
reaction,

The angular distributions of 2,23-Mev gamma rays emerging from
particular thicknesses of borated polyethylene, following the
H(n¢y,y) reaction, are shown in Figure 27. The dotted curve, being
qualitative, was evolved by cross-plotting the experimental data
and extrapolating to @ = 00, Data were not ﬁbtained for @ < 15°
because of the large contribution of scattered primary gamma rays.

Shown in Figure 28 are the angular distributions of 4.45-Mev
gamma rays emerging from various thicknesses of borated polyethylene

slabs following Cla(n,n'y) reactions within the material. The
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dotted curve was determined in the same manner as that described
for Figure 27.

The data shown in Figure 29 are the angular distributions of
2.615-Mev gamma rays[PbQOB(n,n'y) reaction]from particular thick-
nesses of lead. The intensity of scattered primary gamma rays
precluded a quantitative determination of the flux of 2.615-Mev
gamma rays for values of the angle @ << 309,

5,2 OAT Geometry III (Reflection of Neutrons)

Data on the reflection ¢f neutrons, obtained for OAT Geometry
III (see Fig. 8), are shown in Figures 30 through 35. Each figure
containg a table in which are enumerated the parameters 1ﬁvolved.
The dots on each curve represent experimental data points.

The distributions of T(h,y) are shown for h = 12 in. and
h = 24 in. and represent measurements of the total radiation,
Incident plus reflected, for various values of y. The function
D(y) represents the distribution of radiatiop incldent to the test
materials. Thus, for a particular component 6f radlation, material,
and material thickness, the distribution R(h,y) of reflected

radiation is given by

R(h,y) = T(nh,y) - D(y).

A criterion for good geometry is that the total radiation for
either slow or fast neutrons reflected from a particular thickness

¢f material should be independent of h. To evaluate the geometry,
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R(h,y) 1s expressed as R(h,?) where, from Figure 8, @ is defined to
be tan=1l(y/n). The condition for good geometry then requires the
ratio Rz to be equivalent to unity, where

-1
Rg =[[R(12",¢) dsz][fn(zu",g) dn] (1)
g J}

and dQ = 2r sin & 4.
The reflection coefficient Cp is defined to be the ratio of
reflected radiation to incident radiation. The ratio is expressed

as

-1
T, = %[!R(l?’,ﬂ) a + Jn(eu",ﬂ) dﬂ][f D) or sinﬁdﬁ] (2)
g

D(y) is expressed as D(B) with {see Fig. 8) p = tan~1(y/135").
Er denotes the fact that the average value of the reflected radia-
tion measured at h = 12 in. and h = 24 in, is used in the foregoing
equation,

By use of the data shown in Figures 30 through 35, Rg and Er -
as defined by Equations 1 and 2 - were evaluated. Results of the
evaluation are listed in Table 1. The proximity of Rg to unity
implies that the experimental geometry served the purpose for which
it was intended. Er values of 0.43 and 0.14 for steel and borated
polyethylene, respectively, show that replacing steel with poly-

ethylene reduced the reflected fast-neutron dose rate by a factor

of 3.
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For epithermal neutrons, the very large values of Er denote the
significance of incident fast neutrons slowing down within the test
materials and then being reflected as epithermal neutrons. The
value of Cp for thermal neutrons is, for the conditions under which

data were obtalned, independent of the test materials used.

Table 1
Geometry Evaluation and Reflection of
Neutrons
Type Data Reflector Material* | R, Er
Fast-Neutron Dose Rate CHo + ?% 1.00 | 0.14
Steel #304) 1.04 | 0.43
Epithermal~Neutron Flux CHo + ? 1.01 | 1.47
%eel #304 ) 1.08 | 1.11
Thermal-Neutron Flux CHy + ? 0.98 | 0.54
Qteel #304 ) 1.03]0.56
Average 1.02

#A11 materials were 4 inches thick,
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VI. CONCLUSIONS AND RECOMMENDATIONS

This report, together with Volume II, presents a comprehensive
collection of data that should prove valuable for evaluating
calculational methods designed to predict the transport of radlation
in a comparable geometry., Upon examination, the experimental data
show that the geometries served the purpose for which they were
intended, 1.e., a well-defined narrow beam of neutrons and gamma
rays was established and the undesirable components of radiation
leakage and streaming were effectively suppressed. The data include
(1) an accurate definition of the radiation source term, (2) infor-
mation on the flux distribution of thermal and fast neutrons within
the test materials, (3) the angular distribution of slow-neutron
flux, fast-neutron and gamma~-ray number-energy flux, and fast-
neutron dose rate, and (4) the angular distribution of secondary
gamma rays produced in and emerging from the test materials,

6.1 OAT Geometry I

6.1.1 Angular Distribution of Neutrons

The experimental data obtained on the angular distribution of
neutrons provide information from which several conclusions and
observations can be made., Of particular importance are the fast-
neutron dose rate distributions for both pquethylene and lead
(Figs. 13 and 14) and the epithermal-neutron flux distributions for
borated polyethylene (Fig. 16). These distributions show the two
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distinct, and easily separable, scattered and uncollided contribu-
tions to the total distributions. These contributions are easily
separable through material thicknesses of 15 and 6 inches of borated
polyethylene and of lead, respectively. The foregoing indicates
quite clearly that theoretical methods designed to predict the
transport of radiation through slabs should treat the uncollided

and scattered fluxes as two separate components.

A point of interest with regard to the polyethylene slabs is
the small thickness of material required for the scattered component
to reach equilibrium and develop its asymptotic shape; this is
especially true for the fast- and epithermal-neutron fluxes. For
lead, the asymptotic behavior of the fast-neutron scattered
component is closely approximated (Fig. 14) at a slab thickness of
4 inches, whereas this condition for thermal-and epithermal neutrons
18 reached at a slab thickness nearer to 2 inches (Figs. 17 and 18).
Also, for the thicknesses of lead investigated, it appears that the
magnitude of the scattered component of thermal neutrons and of
epithermal neutrons is very nearly independent of the material
thickness,

6.1.2 Neutron Flux Distribution Within Test Materials

The distribution of neutron flux along the centerline of parti-
cular thicknesses of borated polyethylene and of lead slabs (Figs.
19 through 24) shows an expected exponential decrease in intensity

for neutron energies greater than 6.3 Mev. A significant departure
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from exponentlial decay was not found for neutrons of energy greater
than 2.9 Mev. These data provide information on the neutron
number-energy flux as a function of depth into the material.

6.1.3 Secondary Gamma-Ray Production

The data shown in Figures 27, 28, and 29 pertaining to the
production of secondary gamma rays in both a low-Z hydrogenous
material and a high-Z material provide information which is of value
for methods evaluation. The foregoing is particularly true for the
3% borated polyethylene in that a comparison of the flux distribu-
tions for the H(nyp,y-2.23 Mev) and c12(n,nty-U.45 Mev) reactions
(Figs. 27 and 28) shows the large variation in relative intensities
as a function of test materlial thickness and emisslon angle of the
capture and inelastically produced gamma rays.

With respect to Figures 26 and 29 and previous investigations
(Ref. 7) involving lead, the predominating secondary gamma-ray
reaction is the Pb208(n,nt'y-2.62 Mev) reaction. This gamma ray,
being a "hard" gamma for penetration of high-Z materials, becomes
more predominate with increasing lead thickness., Thus, for
geometries utilizing lead as a shield material, a significant
reduction in the secondary gamma-ray component, if the secondary
gammas are important, can be effected by the use of radiolead,
which 1s formed by removal of the szo8 isotope and costs approxi-
mately two and a half times more than chemically pure lead.

6.2 OAT Geometry III (Reflection of Neutrons)

In considering the results of the reflection measurements, it
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is again pointed out that the flux of fast neutrons incident to the
test materials was greater than the thermal and epithermal neutron
fluxes by factors of approximately 8 and 80, respectively.

Although only a 4-in.-thick slab each of 3% borated poly-
ethylene and steel (type 304) were investigated, the data provide
information from which several conclusions can be made.

With reference to Table 1, the reflection of fast neutrons
from steel is a factor of 3 greater than reflection of fast
neutrons from polyethylene. For slow neutrons, the ratio Er
includes both reflected slow neutrons and neutrons that emerge
after being slowed down within the test material. Values of Cp
greater than unity for epithermal neutrons emphasize the significant
contribution from neutrons slowing down. The values of Er for
thermal neutrons are independent of the materials investigated.

Further investigations involving measurements of the trans-
mission and reflection of radiation through and from shield
materials as a function of material thicknesses and combinations
of materials should provide valuable information for the design
of shielded compartments. Reflection contributions from the cavity
walls will increase the values shown in Table 1,which are for a
single-glab geometry. Relative positions of hydrogenous and
high-Z materials would considerably affect transmission, reflection,
and secondary gamma-ray contributions to the total dose rate

within a shlielded compartment.
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